
Formal Methods for the
Certification of Auto-generated

Flight Code
Ewen Denney

Robust Software Engineering
NASA Ames Research Center

California, USA



Bugs in Space
• Mars Climate Orbiter (1998)

– Unit problem in GN&C software
– Crashed into Mars

• Mars Polar Lander (1998)
– Inconsistencies in GN&C

landing model
– Premature engine shut-off
– Crashed into Mars

• Mars Exploration Rover (2004)
– Spirit shut down unexpectedly for 10 days
– Flash ROM overload caused reboot
– Parameter permitted unlimited consumption of

system memory as flash memory was exhausted
– Lost $4M science a day



It’s not just now …

• Gemini 5 (1965)
– Missed landing point by

100 miles
– GN&C didn’t model

rotation of earth around
sun

• Apollo 11 (1969)
– Software reboot during

descent to lunar surface
– Forced manual landing

of lunar lander



It’s not just NASA …

Soyuz TMA-1 (2003)
– Missed landing

point by 275 miles
– “glitch in the craft’s

guidance software”

Ariane 5 (1996)
– Bad 64 to 16 bit

conversion led to
overflow in GN&C
software

– Veered off
trajectory

– Self-destructed

Cryosat (2005)
– ESA Earth Explorer Mission to

measure polar ice
– Launcher fell into ocean when

fuel ran out
– Due to “software glitch” in

control system: software failed
to send command for 2nd stage
separation (but “rocket is ok”)



It’s not just NASA …

Soyuz TMA-1 (2003)
– Missed landing

point by 275 miles
– “glitch in the craft’s

guidance software”

Ariane 5 (1996)
– Bad 64 to 16 bit

conversion led to
overflow in GN&C
software

– Veered off
trajectory

– Self-destructed

Cryosat (2005)
– ESA Earth Explorer Mission to

measure polar ice
– Launcher fell into ocean when

fuel ran out
– Due to “software glitch” in

control system: software failed
to send command for 2nd stage
separation (but “rocket is ok”)



It’s getting worse …

Software for International Space Station (ISS) now
estimated at 6.5 MLOC !



… and worse!
Future missions call for vastly increased levels of intelligence

Automated planning
– On-board decision-making

- Spacecraft operations
- System management

– Schedule generation
- Crew, equipment, systems

Informed Logistics
– Modeling of failure

mechanisms
– Prognostics
– Troubleshooting

assistance
– Maintenance

planning
– End-of-life decisions

Real-Time Systems
Health Management

– Distributed sensing for
structural health

– Fault detection,
isolation, and recovery

– Failure prediction and
mitigation

– Crew and operator
interfaces

Adaptive Control
– Improving safety and

control performance
beyond human ability

– Control in situations of
failure or component
degradation

– Operability in unknown
or changing
environments



The million $ question

Given increasingly
– complex systems
– compressed schedules
– safety-critical software,

Software certification: demonstrating that software
meets its requirements and a given level of safety, either:

– through following a specified process (process-
oriented certification), or

– through providing evidence that the level of safety is
met (product-oriented certification)

how can we develop
software which is

– reliable,
– sustainable, and
– certifiable?



Model-based Development

Modeling:
Simulink (control), Stateflow (executive), Embedded Matlab (everywhere)
Code generation: Real-Time Workshop



Code generators are not perfect

Dear …,

If you are using R14SP3 Simulink code generation products, please review the following information. If you are
not using R14SP3 versions of MathWorks products, please disregard this message.

We have identified bugs in R14SP3 Simulink^® code generation products, which in rare instances generate
incorrect code that is not easily detected. These bugs have been fixed in subsequent releases: R2006a,
R2006b, or the upcoming R2007a release.

To prevent impact from these bugs, R14SP3 code generation software users should take the following actions:

*Review Related Bug Reports with Potential Workarounds*
You can find the documented issues and potential workarounds through the following links (login required):

Bug Report 275411 <http://www.mathworks.com/support/bugreports/details.html?rp=275411>
Bug Report 283331 <http://www.mathworks.com/support/bugreports/details.html?rp=283331>
Bug Report 284002 <http://www.mathworks.com/support/bugreports/details.html?rp=284002>
Bug Report 291423 <http://www.mathworks.com/support/bugreports/details.html?rp=291423>
Bug Report 291978 <http://www.mathworks.com/support/bugreports/details.html?rp=291978>

Frequent updates - bug reports, work-arounds and fixes



Qualification

• A code generator is qualified
– with respect to a given standard
– for a given project

if there is sufficient evidence about the
generator itself so that V&V need not be
carried out on the generated code to certify it

• Must be done for every project, version
– can obtain verification credit

• Generators are rarely qualified
– ASCET-SE (IEC 61508), SCADE, VAPS (DO-178B)

• Qualifying code generators is (almost)
infeasible!



Issues

Commercial code generators are black
boxes
– Not qualified so need to analyze generated

code
• Historically buggy: despite extensive

heritage, rare bugs still remain
• Cannot detect many bugs at model level

or via simulation
• Math intensive code requires powerful

analysis techniques



Product-oriented certification

• Augment code generator to generate certificates
together with code (aka. the “verifying compiler”
approach)

• No need to qualify/re-qualify code generator
• Code certificates:

– proof of a specific safety property
– can be independently verified
– require only a small trusted infrastructure
– process is completely automated

• Support engineers doing software assurance
– generate safety documentation for human analysts



Assurance strategies for autocoding
• Documentation

– explain the code synthesis and certification process
– increases transparency and trust in process

• Traceability
– link elements of generation process
– mandated by NASA standards

• Proof
– mathematical proof is gold standard
– difficult to achieve and interpret without automation
– show incrementally for individual properties

Use code generator plug-in to automate this
⇒ minimal impact to existing process



Technical approach
• Combine generator with

certification plug-in:
AutoCert

• Generate certificates
which can be verified
independently
(IV&V)

• Based on formal logic
– Range of safety

properties
– Pattern-based approach

to inferring annotations
– Fully automated
– Can be used to generate

explanations
– Small set of trusted

components



Language-specific safety properties

• Memory safety: array bounds
– Buffer overflows often lead to unsafe programs

• Variable initialization before use
– Un-initialized variables can cause

unpredictable/unrepeatable effects
– Compilers only check for initialization of scalars
– e.g.: RTW Bug: uninit variables in DEMUX blocks

Language-specific safety properties to check specific constructs
of the target language (C)



Domain-specific safety properties

• invariants
• matrix symmetry: “covariance matrix P always symmetric”
• quaternion, probability vector norms: “must add up to 1”
• coordinate systems, units: “must use consistently”
• arithmetic saturation/variable ranges: “actuator rate < 0.1”

• system-specific properties
• “are all sensor data used?”

• block properties
• “all values of x in interpolation table disjoint and increasing”

Simulink control models often “math-heavy”



Trusted Architecture

• Small kernel of untrusted components

  - patterns and annotations untrusted



• Covariance matrices (PM,
PP) in a Kalman filter must
remain symmetric during
update
• individual matrix operations
in the generated code must be
checked:

• x=R+H*PM*H’ is symmetric

• Annotations are required
• Analysis tool automatically
generates annotations based
upon idiomatic code patterns

Matrix symmetry

K=PM*H'*inv(R+H*PM*H');
PP = (I-K*H)*PM*(I-K*H)' + K*R*K';

Simulink: Embedded Matlab

… 
for (eml_i0 = 0; eml_i0 < 2; eml_i0++) {
      for (eml_i1 = 0; eml_i1 < 2; eml_i1++) {
        eml_x11 = 0.0;
        for (eml_i2 = 0; eml_i2 < 2; eml_i2++) {
          eml_x11 += eml_dv0[eml_i0 + (eml_i2 << 1)] * 
                               eml_dv1[eml_i2 + (eml_i1 << 1)];
        }
         eml_x[eml_i0 + (eml_i1 << 1)] = eml_R[eml_i0 + (eml_i1 << 1)] 
                                                               + eml_x11;
      }}

RTW

/* post  forall eml_i0: int, eml_i1: int

                0 <= eml_i0 < 2 & 0 <= eml_i1 < 2

               =>  eml_x[eml_i0 + (eml_i1 << 1)] = eml_x[eml_i1 + (eml_i0 << 1)]
*/



Vector norms

• Intuitively:
Vectors must be normalized

• Show preservation of
norm by update
operations

• Domain-specific
requirement

• Requires code
annotations



Traceability

• Traceability:
“the ability to link requirements back to

rationales and forward to corresponding
design artifacts, code, and test cases”



Traceability

• Traceability:
“the ability to link requirements back to

rationales and forward to corresponding
design artifacts, code, and proofs”

•  “why is this line of code safe?”
line of code → verification conditions

• “where does this condition come from?”
verification condition →  lines of code



Autocode safety reports
• Verification says that the code is safe
• Explanation says why the code is safe
• Use code analysis to generate safety report: explain how code

complies with safety properties
“the variable rtb_GetVeci is in the coordinate frame Earth-Centric Inertial because it is

defined by applying the ECEF to ECI transformation to the variable … which is in
turn…”
 ⇒ support code reviews

• Trace to relevant code fragments and model

Auto-generated code

Proof
Status

 Show obligations

Safety Obligations

Highlight code

Formula or
explanation



Summary

• Formal basis
– Safety requirements in first-order logic
– Semantics in VCG
– Prove VCs with ATP

• Tool
– Tight integration with development tool suite
– Trace code and model to verification artifacts
– Trusted architecture

• Usage
– Incremental approach
– Generates safety documentation
– Supports independent V&V


